369297=0.6213x^2+468084x+14091

Simple and best practice solution for 369297=0.6213x^2+468084x+14091 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 369297=0.6213x^2+468084x+14091 equation:


Simplifying
369297 = 0.6213x2 + 468084x + 14091

Reorder the terms:
369297 = 14091 + 468084x + 0.6213x2

Solving
369297 = 14091 + 468084x + 0.6213x2

Solving for variable 'x'.

Combine like terms: 369297 + -14091 = 355206
355206 + -468084x + -0.6213x2 = 14091 + 468084x + 0.6213x2 + -14091 + -468084x + -0.6213x2

Reorder the terms:
355206 + -468084x + -0.6213x2 = 14091 + -14091 + 468084x + -468084x + 0.6213x2 + -0.6213x2

Combine like terms: 14091 + -14091 = 0
355206 + -468084x + -0.6213x2 = 0 + 468084x + -468084x + 0.6213x2 + -0.6213x2
355206 + -468084x + -0.6213x2 = 468084x + -468084x + 0.6213x2 + -0.6213x2

Combine like terms: 468084x + -468084x = 0
355206 + -468084x + -0.6213x2 = 0 + 0.6213x2 + -0.6213x2
355206 + -468084x + -0.6213x2 = 0.6213x2 + -0.6213x2

Combine like terms: 0.6213x2 + -0.6213x2 = 0.0000
355206 + -468084x + -0.6213x2 = 0.0000

Begin completing the square.  Divide all terms by
-0.6213 the coefficient of the squared term: 

Divide each side by '-0.6213'.
-571714.1478 + 753394.4954x + x2 = 0

Move the constant term to the right:

Add '571714.1478' to each side of the equation.
-571714.1478 + 753394.4954x + 571714.1478 + x2 = 0 + 571714.1478

Reorder the terms:
-571714.1478 + 571714.1478 + 753394.4954x + x2 = 0 + 571714.1478

Combine like terms: -571714.1478 + 571714.1478 = 0.0000
0.0000 + 753394.4954x + x2 = 0 + 571714.1478
753394.4954x + x2 = 0 + 571714.1478

Combine like terms: 0 + 571714.1478 = 571714.1478
753394.4954x + x2 = 571714.1478

The x term is 753394.4954x.  Take half its coefficient (376697.2477).
Square it (141900816400) and add it to both sides.

Add '141900816400' to each side of the equation.
753394.4954x + 141900816400 + x2 = 571714.1478 + 141900816400

Reorder the terms:
141900816400 + 753394.4954x + x2 = 571714.1478 + 141900816400

Combine like terms: 571714.1478 + 141900816400 = 141901388114.1478
141900816400 + 753394.4954x + x2 = 141901388114.1478

Factor a perfect square on the left side:
(x + 376697.2477)(x + 376697.2477) = 141901388114.1478

Calculate the square root of the right side: 376698.006517353

Break this problem into two subproblems by setting 
(x + 376697.2477) equal to 376698.006517353 and -376698.006517353.

Subproblem 1

x + 376697.2477 = 376698.006517353 Simplifying x + 376697.2477 = 376698.006517353 Reorder the terms: 376697.2477 + x = 376698.006517353 Solving 376697.2477 + x = 376698.006517353 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-376697.2477' to each side of the equation. 376697.2477 + -376697.2477 + x = 376698.006517353 + -376697.2477 Combine like terms: 376697.2477 + -376697.2477 = 0.0000 0.0000 + x = 376698.006517353 + -376697.2477 x = 376698.006517353 + -376697.2477 Combine like terms: 376698.006517353 + -376697.2477 = 0.758817353 x = 0.758817353 Simplifying x = 0.758817353

Subproblem 2

x + 376697.2477 = -376698.006517353 Simplifying x + 376697.2477 = -376698.006517353 Reorder the terms: 376697.2477 + x = -376698.006517353 Solving 376697.2477 + x = -376698.006517353 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-376697.2477' to each side of the equation. 376697.2477 + -376697.2477 + x = -376698.006517353 + -376697.2477 Combine like terms: 376697.2477 + -376697.2477 = 0.0000 0.0000 + x = -376698.006517353 + -376697.2477 x = -376698.006517353 + -376697.2477 Combine like terms: -376698.006517353 + -376697.2477 = -753395.254217353 x = -753395.254217353 Simplifying x = -753395.254217353

Solution

The solution to the problem is based on the solutions from the subproblems. x = {0.758817353, -753395.254217353}

See similar equations:

| 3x*4=x+2*8 | | 8v^2+6v-28=-10 | | 125-v=25-v-1 | | 12+5x=y | | -3-6v=-5(v-1) | | 2x-8=76-76 | | -2(b-6)+6=12-b | | y=12+5x | | □/15=35/5 | | 3=2f+5 | | -8(3n-4)=-25-5n | | 25x-7=9 | | y^2+12x+6y-27=0 | | (y-12)=5x | | m^2-9m-13=9 | | -4(-6-5x)=4x+24 | | 8x^2-2-18=-15 | | 1.25x+2y=50 | | 2r^2-3r+9=0 | | 12x-2=9x-4 | | 4-5/8(2) | | -6*(-7/2) | | Log[6](x-7)=2 | | 3n^2+6n-16=0 | | 4-5/8(-4) | | 4-5/8(6.5) | | 500x=5000 | | 4-5/8(-3) | | 11y+10x=3333 | | 5/2=-7w | | Y^2=15y-64 | | Y=-x(x-6) |

Equations solver categories